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Preface

Computer modeling is extensively applied in all areas of engineering and science. Especially
for the design of economical and efficient acrospace structures computer modeling is a
valuable tool. For flow around aerospace structures large computer memory and time is
required due to complex geometry. If accurate solution is obtained with less number of grid
point that is the ideal situation. To achieve this objective adaptive Finite Element Method

(FEM) is tried here.

The adaptive FEM technique was proposed in early 1980s to reduce the discretized
errors resulted from a FEM mesh. In this technique, the errors are first calculated
to assess the accuracy of the solution. If the errors are large, the finite element
model is then refined through redistributing the nodes (called R-version adaptive
FEM), or reducing the size of elements (called H-version adaptive FEM), or
increasing the order of the interpolation functions (called P-version adaptive FEM)
[13], or using the combination ways. The new model is then re-analyzed and the
errors in the new model are recalculated. The procedure is continued until the
calculated errors fall below the specified permissible values. Hence, the adaptivity

means that the FEM model refinement is based on the error distribution.

For standard problem with regular geometry several work has been done using
adaptive FEM technique. However, there seems to be far less work being done
directly for complex geometries. There are several challenges like selection of proper
solvers when the condition number is very high and the advantage of using p-

adaptive and h-adaptive. These issues are addressed in this research.

We would like to express our special thanks to the AFOSR, DOD for their
sponsorship of this project. Especially the encouragement provided by Dr. Len
Sakell, AFOSR in the initial stages is acknowledged.

R. Panneer Selvam & Zu-Qing Qu
Fayetteville, Arkansas, May 2004
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Abstract

Predicting wind induced aerodynamic forces on aerospace structures is usually
computationally expensive even for powerful computational facilities. For these
unsteady computations, adaptive finite element technique may reduce the
computer time and storage while keeping a desired accuracy. In this report, the p-
version adaptive finite element method is implemented into a standard benchmark
problem, the computational flow around a circular cylinder, to compute
aerodynamic forces. The error distribution for velocity is first estimated. Then, the
polynomial order of the interpolation function is changed continuously in
accordance with the changing of the error distribution. The second through fifth
orders of polynomials are considered for the velocity in the adaptive method. One
order less of polynomial is used for pressure. The benchmark problem of the flow
around a circular cylinder with Reynolds number of 1000 is considered to study the
performance. The effects of the highest order of polynomials, error tolerance, and
size of the element on the accuracy of the drag and lift coefficients are survéyed
using this flow simulation. The results show that the accuracy of the velocity close
to the cylinder affects the drag and lift coefficients and the error, 20% for example,
far away from the cylinder does not have much effect on the accuracy of these

coefficients.

1. Introduction

Prediction of wind-induced aerodynamic forces on aerospace structures has been
mainly made by experimental methods involving the wind tunnel technique [1,2].
However, with the advent of supercomputers the tendency is gradually changing.
Powerful computational facilities make it possible to deal with these physical
quantities numerically. The Large Eddy Simulation (LES) based on the
Smagorinsky’s eddy viscosity model used by Murakami and his research group for
wind engineering [3] is used in the modeling of drag crisis around a circular
cylinder. Kakuda and Toskada [4], Kondo [5] and Tamura et al [6,7] used the no-
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turbulence model to study the flow around a circular cylinder. Instead of using
explicit methods [3-7], an implicit solution procedure to solve the Navier-Stokes (NS)
equations using LES and finite element method was proposed by Selvam [8] to
study flow around a cylinder. As we know, to solve the flow around a bluff structure
is highly computationally expensive. For these unsteady computations, adaptive

finite element method may reduce the computer time and storage.

The adaptive FEM technique was proposed in early 1980s to reduce the discretized
errors resulted from a FEM mesh. In this technique, the errors are first calculated
to assess the accuracy of the solution. If the errors are large, the finite element
model is then refined through redistributing the nodes (called R-version adaptive
FEM) [9,10], or reducing the size of elements (called H-version adaptive FEM)
[11,12], or increasing the order of the interpolation functions (called P-version
adaptive FEM) [13], or using the combination ways. The new model is then re-
analyzed and the errors in the new model are recalculated. The procedure is
continued until the calculated errors fall below the specified permissible values.
Hence, the adaptivity means that the FEM model refinement is based on the error

distribution.

The adaptive FEM technique has been discussed in detail during the past two
decades. The results of such work are fruitful [14]. However, there seems to be far
less work being done directly in the wind engineering which needs much more

complicated procedures.

Choi and Yu [15,16] investigated the h-refinement for flows over a square cylinder.
They used the penalty-function formulation to solve the NS equations. This
procedure is not used commonly. Selvam [17, 18] applied the mesh enrichment
technique (h-refinement) and p-refinement techniques to flows over a circular

cylinder. He used primitive variable form to solve the NS equations.

In this report, the finite element modeling of the benchmark problem, the flow
around a circular cylinder, is described in Section 2. Three-step advancement

scheme for solving the N-S equations by LES is discussed. The error estimation
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based on the velocity is proposed in Section 3. The details on the implementation of
the p-adaptive technique are also discussed in this section. In Section 4, the
simulation of a flow over a circular cylinder for Reynolds number of 1000 is
considered. The effects of the highest order of polynomials, error tolerance, and size
of the element on the accuracy of the drag and lift coefficients are surveyed using
this flow simulation. Some useful conclusions will be given in that section. The
computed drag and lift coefficients are also compared with the experimental and

other computational results.

2. Finite Element Modeling of the Flow

In the following discussion Reynolds number R,, drag coefficient C,, lift coefficient
C,, and Strouhal number S, are defined as
(R, =VD/v
¢, =F,/(0.5p7*D)
ﬁ

¢, =F,/(0507°D)
s, =D/TV

(1)

where D is the diameter of the cylinder, V is the reference velocity, v is the

kinematic viscosity, F, and F, are the drag and lift force, T is the period of oscillation

of the lift forces and p is the density.

The flow around a cylinder is represented by using the Navier-Stokes (NS)
equations. The two and three-dimensional equations for an incompressible fluid in
general tensor notation are as follows:

Continuity Equation: U,;=0 (2)
Momentum Equation: U, +UU, ;= —~(p/ p)’i + lv(U iU )J, (3)

where U, and p are the velocity and pressure respectively. p is the fluid density. A

i

comma represents one differentiation; ¢ represent time. i =1, 2 and 3 mean variables
in the x, y and z directions. To implement higher order approximation of the

convection term the following expression is used instead of Equation (3)
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Ui+ UjUi,j - e(UjUkUi,j),k /2 = “(P/P),i + I.V(Ui,j +Uj, )J (4)

Depending upon the values of 6, different procedures can be implemented. For
balance tensor diffusivity (BTD) scheme 6 =8¢ is used; where ¢ is the time step size
used in the integration. For streamline upwind procedure suggested by Brooks and
Hughes [19], O is considered as

1

(RN
dx dy dz

6= (5)

Here dx, dy, and dz are the control volume length in the x, y, and z directions; U,
U,, and U, are the velocities in the three directions. In this computation 6 =6¢ is

used. This has less numerical diffusion as compared with benchmark problems [20].

The NS equations are solved by using an implicit method, which is similar to
Selvam [8], to eliminate the numerical stability restrictions. The three-step

advancement scheme for Equations (2) and (4) is as follows:

Step 1: Solve for U, from Equation (3). The diffusion and the higher order

convection terms are considered implicitly to be in the current time and the first
order convection terms are considered explicitly from the previous time step. The
pressure is considered in the right hand side of the equation. This set of equations
leads to a symmetric matrix and the preconditioned conjugate gradient (PCG)

procedure is used to solve it.

Step 2: Solve for pressure correction from

(617,1'),,- = U,~,,-/5t .

Step 3: Correct the velocity for incompressibility:
U,=U,-6(p,)

where U, is not specified and update the pressure p=p+dp.
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Suppose the element variables U, and P are discretized using the shape functions
N, and N, ie.

U=Nyu;, P=N,p ()
where N, and N, are 1xn, vectors; u, and p are n,x1 vector; n, is the number of

nodes for each element. Here, the velocity and pressure are approximated by using
unequal order interpolation polynomial because if an equal order is used, the
solution starts to diverge due to the violation of Babusk and Brezzi condition.
Introducing Equation (6) into Equation (2) and using the regular Galerkin

procedure the following matrix expressions are obtained:
mu,;, +(d+v1 +v2)ui +qp=f (7)
where

m=[ NINd2, d=[ NJ,(v+v)N,d2,
w=[, NN, d2, v,=[ N (6UU, 2N, 42, q= [ NN, d2. (@)

In equation (7), m, d, v,, v,, and ¢ are the mass, diffusion, convection due to the
first and second order and pressure matrices of size n,xn,. f is the n,x1 vector

which considers the given Neumann boundary conditions. After assembling all the

element matrices, the equations of the finite element model becomes
MU, +(D+V,+V,JU,+QP=F 9)

Equation (9) can be solved by using the aforementioned implicit method. The

detailed solution procedure is similar to Selvam [8].

3. P-adaptive Finite Element Technique

The error estimate is one of the most important steps in the adaptive technique. It
gives the error distribution in the present finite element grid, which can be used as
indicator to refine the grid. The discretization errors of a finite element solution can
be estimated by implicit or explicit method [21]. In structural engineering, stress
recovery techniques are usually used to estimate the errors because they are much
easier to implement in the programming. As the exact solution is generally not

known, most of the approaches are concerned with posteriori error estimates.
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In the present research, the error estimator based on the velocity is considered. The
error is computed by considering the higher order solution to be exact and the lower
order to be approximate. The difference between the two is defined as the error in the

present grid, that is

N R [ N 7
JLan

where v, , and v, are the velocity obtained from the finite element model using p -1

m = (10)

and p order interpolation functions, respectively. The order of polynomial to start

with is quadratic (p=2) for velocity. Hence it is easy to compute from quadratic to
linear, third order to quadratic, and fourth order to third order.

After the errors have been estimated and been found to be big, the next step is to
refine the finite element model so as to reduce the errors. The accuracy of a finite
element solution depends upon the shape and size of the elements and the order of
the interpolation functions. Consequently, there are three methods to refine the
finite element model. In this paper, p-version is implemented to the wind

engineering.

P-refinement increases the order of the interpolation functions While keeping the
mesh unchanged. Higher order elements generally provide a better description of
the domain geometrically. They are particularly useful in regions where use of lower
order elements would result in a mesh with poor aspect ratios in those elements
[14]. From the point of view of solution accuracy, higher order elements are usually

more accurate than the lower order elements.

The Hierarchical functions are applied here to increase of the interpolation function
order because the method requires only the computation of the coefficients in rows
and columns associated with the new enriched degrees of freedom, which together

with the previously computed element matrices form a new stiffness matrix [22,23].

For one-dimensional elements, the linear shape functions are usually defined as
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1- 1+
BE)=1"5, RE)="E (1)
2 2
where £ (-1<& <1) is a non-dimensional coordinate. There are many ways to

construct the higher order shape function [23]. The following shape functions are
used in this report:

£ —1 seven

& —¢& sodd (12

Ps(é)={

where s (>2) is the degree of the introduced polynomial. The corresponding

displacement function can be obtained as

u(5)=§a,-e(¢) (13)

Using these one-dimensional formulae, it is easy to derive two-dimensional shape
functions [18]. These shape functions can be directly used in Equations (8) to

compute the element matrices.

In the present work, four-node quadrilateral element is used to describe the
geometry of the element. The polynomial order considered for velocity are from 2 to
5, which means in each direction interpolation function of the order of 2 through 5
are considered. The 1st through 4th orders of polynomial, which are one order less
than that for velocity respectively, are considered for the pressure. The size of the
element stiffness matrix for velocity varied from 9x9 to 36x36. The matrices are
numerical integrated. The integration points considered at this time are 3x3

through 36x36.

4. Simulation of the Flow around a Circular Cylinder

The computational region of the wind around a circular cylinder is shown in Figure

1. Its length in the x and y directions are non-dimensionalized with respect to the

diameter of the cylinder. The inlet velocities in these two directions are considered
to be one and zero, respectively. On the top and bottom sides, the vertical velocities

and the normal derivative of the velocities are set to be zero. The velocities are also

10
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considered to be zero (no slip) on the surface of the cylinder. The flow around the

circular cylinder for Reynolds number of 1000 will be considered in the following.

Y
12 J9§

X

21

Figure 1. Computational region of the wind around the cylinder

4.1 Coarse Grid

Two coarse grids shown in Figure 2 are considered at first. Both grids have 414
(24x15+9x6) elements and 447 nodes. The minimum spaces in the radial direction
around the cylinder are, respectively, 0.098 and 0.020 in Grid A and Grid B. The
highest orders of the interpolation polynomials considered are P=2 and P=5.
Here and in the following, P denotes the highest polynomial order used in the
adaptive refinement. P=2, for example, means that no refinement is applied even
though the error is larger than the prescribed one. The flow is run 60 seconds. After
3 seconds, the error distribution will be evaluated every 0.2 second. The finite
element model will be refined if the estimated error is higher than prescribed which

is set as 10% at this time.

AN [ /

\\\ \\ // // \\ \\ // //
\\\\ - /// \\ rd
\\\\ :,//' \\ L1
/.,-” :"\\ | AT ]
AR glomiin

A N /T AN

(a) (b)

Figure 2. Two coarse grids: (a) Grid-A; (b) Grid-B

11
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\
|
|
|

() (d)
Figure 3. Distribution of the polynomial order: (a) Grid-A; (b) Grid-B;
(c) Zoom of Grid-A; (d) Zoom of Grid-B

The distributions of the polynomial order at the end of 60-second are plotted in
Figures 3(a) and 3(b). The corresponding error distributions are shown in Figure 4.
The estimated errors are, respectively, 24% and 19% for the two cases. For most of
the elements around the cylinder and on its right side, their orders have been
increased by 3, 4, and 5 respectively. The 5th order of polynomial are only located
on the vorticity shade area. For clarity purpose, the areas around the cylinder are
zoomed in Figures 3(c) and 3(d) respectively. Since the size of the element in the
radial direction used in Grid-A is much bigger than the Grid-B, the orders of many
elements around the cylinder in the former case are increased by 5, while they are 2
through 4 in the latter case. As we know, if the orders of all the element are
increased from 2 to 5, the number of the unknowns will be increased by 4 times,

while they are 2.95 and 2.64 times for the Grid-A and Grid-B respectively.

12
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(b)

(d)
Figure 4. Distribution of the error: (a) Grid-A; (b) Grid-B;
(c) Zoom of Grid-A; (d) Zoom of Grid-B

The drag and lift force coefficients for both cases are shown in Figures 5 and 6
respectively. The results obtained from both P=2 and P=5 are included. The
difference of the coefficients is significant especially for the Grid-A. The average,
amplitude of the drag coefficients and the period of lift coefficient for the two cases
are listed in Table 1. The averaged drag coefficients, for example, in Figure 5 (a) are
0.872 and 1.298 for P=2 and P =5 respectively. The former is much smaller than
the reasonable value 1.42 which will be provided later. This means Grid-A is
unreasonable to be used to perform the force coefficient analysis. After the p-
adaptive technique is implemented, the averaged drag coefficient increases a lot. Its
error reduces from 38.6% to 8.5%. The amplitudes of the drag coefficient have

similar phenomenon.

13
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Figure 6. Lift coefficient for both cases: (a) Grid-A; (b) Grid-B

Table 1. Drag coefficients and period for Grid-A and Grid-B

Grid P Average (c,) | Amplitude (c,) | Period (c;)
Grid- 2 0.872 0.074 4.35

A 5 1.298 0.146 5.00
Grid- 2 1.208 0.100 5.00

B 5 1.329 0.165 5.00

Since the minimum space around the cylinder in the radial direction is reduced
from 0.098 in Grid-A to 0.020 in Grid-B, the computed drag coefficient increases to

1.208 for P=2. Aftef the refinement is considered, the coefficient becomes 1.329.

14
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The difference between P=2 and P =35 becomes 9.1% while it is 32.8% in Grid-A.
One of the reasons may be that the orders of the elements around the cylinder for
Grid-B are not increased as much as that in Grid-A. Totally, the estimated errors
are still a little high, around 20%, even though P=5 is considered in Grid-B.
Therefore, the value of the drag coefficient 1.329 is a little smaller than 1.42.
Consequently, more refine grid is necessary for accuracy purpose. The sizes of the

element around the cylinder will be reduced both in the radical direction and its

tangential direction.

4.2 Refined Grid

Three finite element grids shown in Figure 7 are considered. The properties of them
are listed in Table 2. The flow is also run 60 seconds. After 3 seconds, the finite

element model will be refined every one second.
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Figure 7. Three finite element grids: (a) Grid-I; (b) Grid-II; (c) Grid-III
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Table 2. Properties of the three finite element grids

Grid No. No. of Elements No. of Nodes Egs. of V/P Min. Space
Grid-1 1995(60x31+15x9) 2064 8118/2064 0.020
Grid-II 3195(75%x39+30x9) 3279 12948/3279 0.015

Grid-Ill  7335(90x39+45x45) 7470 29610/7470 0.012

Effects of the Highest Polynomial Order P

The drag and lift force coefficients computed using Grid-I are plotted in Figures 8
and 9. The drag coefficients between 40-second and 60-second are zoomed in the
plot 7(b) for clear purpose. The prescribed error limitation is set as 10% at first.
After the simulation runs 40 seconds, both the drag and the lift force coefficients

become stable. It can be seen from Figures 8 and 9 that there is no much difference

- among the amplitudes of the drag and lift coefficients for different Ps. For accuracy

purpose, only the last four periods of drag plots and three periods of lift plots are

considered for comparison in the following.

20

0.0 T T T T T 11

[ 10 20 30 4 50 60 40 45 50 55 80
Time (s) Time (s)
(a) (b)

Figure 8. Drag coefficients for P=2, 3, 4, and 5 with Grid-I: (a) Full plot; (b) Locally

zoomed plot

16
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Figure 9. Lift coefficients for P=2, 3, 4, and 5 with Grid-I

The averages, amplitudes, and periods of the drag and lift force coefficients
computed from the Grid-I are listed in Table 3. When the polynomial orders of all
the elements are two, the average, amplitude, and period of the drag coefficient are
1.386, 0.195, and 2.389 respectively. When the highest polynomial order P is set as
3, the average and period decrease to 1.370 and 2.369 while the amplitude of the
drag coefficient increase a little. After that, even though the highest polynomial P
has been increased to 4 and 5, the average, amplitude, and period change very
slightly. As for the lift force coefficient, it changes a little with the increase of the
highest polynomial order P. When the prescribed error is 5%, these results change a
lot from P=2 to P=3. Then, there is no much difference for the P=3, 4, and 5.

Table 3. Drag and lift coefficients for Grid-I

Prescribe P Drag Coefficient Lift Coefficient
d Error Average Amplitud Period Averag Amplitu Period
e (s) € de (s)
10% 2 1.386 0.195 2.389 0.001 1.340 4.768
10% 3 1.370 0.199 2.369 0.002 1.327 4.743
10% 4 1.375 0.202 2.368 0.005 1.339 4.743
10% 5 1.375 0.202 2.372 0.006 1.340 4.741
5% 3 1.422 0.216 2.352  -0.002 1.402 4.723
5% 4 1.422 0.217 2.357 0.004 1.404 4.720
5% 5 1.420 0.217 2.359 0.004 1.405 4.727

17
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Figure 11. Amplitudes of the drag and lift coefficients for different cases: (a) drag

coefficients; (b) Lift coefficients
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Figure 12. Periods of the drag and lift coefficients for different cases: (a) drag

coefficients; (b) Lift coefficients

The averages, amplitudes, and periods of the drag and lift force coefficients
computed from the Grid-II and Gird-III are plotted in Figures 10, 11, and 12. The
results obtained from Grid-I are also plotted in these figures for comparison
purpose. In these figures, the notations of the six cases are listed in Table 4.
Obviously, when the highest polynomial order P is set as 3, the accuracy of the
results obtained from Grid-II and Grid-III can improved some. However, the changes
of the accuracy of the drag and lift coefficients are very insignificant for the P=4 and

5. Consequently, P=4 for the present case is usually enough.

Table 4. Notation of the six cases

Case Prescribed Grid Case Prescribed Grid
Error Error
1 10% Grid-I 4 5% Grid-II
2 5% Grid-I 5 10% Grid-III
3 10% Grid-II 6 5% Grid-III

The maximum errors of the velocity computed between 50-second and 60-second
are plotted in Figure 13. Obviously, the errors for the P=2 are very big and most of
them are higher than 30% for Grid-I. When P is set as three, the accuracy of the

velocity improves a lot. Unfortunately, the errors do not change much when P is
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increase from three to four and then five. There are two possibilities. One is that the
error estimation defined in this paper is unreasonable. The other is that higher
order polynomials, 4th and 5th for example, do not have much effect on the
accuracy of velocity. Sometimes, the errors reduce with the increase of the highest
polynomial order P. The errors in plot 13(b) for P=4 and 5, for example, are higher
than those resulted from P=3. One possible reason is that the orders of the

interpolation polynomials are set as 2 for all elements.

It can be seen from plot 13(b) that the errors of the velocity obtained from P=4 are
much higher those from P=3. However, the drag and lift force coefficients for both
cases are very close that are indicated in Case 2 of plots 10(a) and 11. The same
phenomenon happened for Grid-II. The accuracy of the velocity for P=4 and 5 is
much lower than that for P=3 while the aerodynamic force coefficients are very
close. If the error estimation defined in this report is reasonable, the aerodynamic
force coefficients are insensitive to the accuracy of the velocity. This means coarse
grids and low order interpolation polynomial can produce similar results with

respect to the refined grids and high order polynomial.

0.5

g ’ = N g E i § —e—P=4

w 491 .....--...;.........-.:,.-._._._.,:_ —A—P=54 . ...... woeal ... : : : —a—p=5{ _
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Figure 13. Maximum errors between 50-second and 60-second for Grid-I:

(a) Error tolerance 10%; Error tolerance 5%
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Figure 14. Maximum errors between 50-second and 60-second for Grid-II:

(a) Error tolerance 10%; Error tolerance 5%

020 : 020 . .
i § —p=2 . i i ——P=2 i
i i —a—P=3 5 i jj —a—P=3 i
1 | —e—P=4 H | i| —o—P=4 |
i RN e sl /\ i PN T | ——p=s _/\
0104 ---------- o 1o NG gl Dt 6 010------neo boemomaoonn R dmmmmeeen deomeseeeens
| e ; g L
: : : ' o/‘/‘/\?‘\ ‘ ;
11,171 SO R B A 0.05 : H
0.00 i E E 3 0.00 ]
50 52 54 56 58 60 50
Time (s)
(@) (b)
Figure 15. Maximum errors between 50-second and 60-second for Grid-III:

qualitatively.

(a) Error tolerance 10%; Error tolerance 5%
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Together with the numbers of equations of velocity and pressure at the time 60-
second, the run times for the three grids are listed in Tables 5, 6, and 7 for

difference Ps. The run times mentioned here are not the exact and can only be used

Let us look at the results for Grid-I with the error tolerance is 10% that are listed in

the up part of Table 5. When the P increases from 2 to 3, the number of equations
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for velocity and pressure increase by 16.9% and 292% respectively. Unfortunately,
the drag force coefficient reduces a lot which leads to a much higher error that P=2
because the “exact” coefficient for this grid is looked as 1.42. After that, even
though the coefficient increase when P increases to 4 and 5, they are still lower
than that for P=2. Hence, for this case the p-adaptive technique is absolutely
unnecessary. For the case with error tolerance 5%, the result seems a little better.
When P increases from 2 to 3, the number of equations of velocity and pressure
increase by 28.3% and 293% respectively. The accuracy of the corresponding
aerodynamic coefficients also increases significantly. Unfortunately, even though
the number of equations increases a lot, the drag and lift coefficients change very

insignificant. The similar phenomenon happens in the Grid-II and Grid-III.

Table 5. Number of equations and run time for Grid-I

Error Polynomial Eqgs. Of Velocity At Egs. of Pressure At Run Time
Order 60s 60s (min)
10% 2 8118 2064 209
10% 3 9492 8094 421
10% 4 9758 9613 459
10% 5 10524 10447 670
5% 3 10414 8118 554
5% 4 10972 10076 661
5% S 14579 14446 1855

Table 6. Number of equations and run time for Grid-II

Error Polynomial Eqgs. Of Velocity At Egs. of Pressure At Run Time
Order 60s 60s (min)
10% 2 12948 3279 365
10% 3 14291 12909 630
10% - 4 14334 14126 638
10% 5 14398 14236 646
5% 3 15994 12948 899
5% 4 16220 15527 881
5% 5 17693 17522 1368
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Table 7. Number of equations and run time for Grid-III

Error Polynomial Egs. Of Velocity At Egs. of Pressure At  Run Time
Order 60s 60s 7 (min)
10% 2 29610 7470 1125
10% 3 30735 29511 1346
10% 4 30742 30511 1405
10% 5 30781 30556 © 1338
5% 3 33698 29610 1889
5% 4 33770 33356 2052
5% 5 34084 33801 1948

Effects of the Error Tolerance

The program is run again for the Gird-I when the error tolerances are set as 2% and
1% respectively. The maximum errors computed between 50-second and 60-second
with P=5 are plotted in Figure 16. The percentages of the elements with 2nd, 3rd,
4th, and 5th orders interpolation polynomial are listed in Table 8. They are resulted
from P=5 and error tolerances are 10%, 5%, 2%, and 1% respectively. The
corresponding averages, amplitudes, and periods for the error tolerances 2% and
1% are 1.421, 0.217, 2.351 and 1.420, 0.215, 2.359 respectively.

The averaged maximum errors between 50-second and 60-second are, respectively,
0.1102, 0.0885, 0.0702, and 0.0760 for n1=10%, 5%, 2%, and 1%. The accuracy of

the results improves a lot when the prescribed error changes from 10% to 5%.
There is no much change when the error tolerance reduces from 5% to 2% and then
to 1% even though the percentage of the elements with S5th order polynomial
increases from 10.93% to 20.40% and then 27.07%. Again, it seems higher order

polynomial does not have much effect on the accuracy of the force coefficients.

As for the aerodynamic forces, there is no much difference for the Grid-II and Grid-
III when the error tolerance reduces. One reason is that the results obtained from
Grid-II and Grid-III are already very close to the exact. Again, the higher order

polynomial seems insignificant to the accuracy of the drag and lift force coefficients
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for the present problem. Consequently, although the low error tolerance can
increase the number of equations of velocity and pressure and the accuracy of the
velocity somewhat, it can not increase the accuracy of the aerodynamic forces

significantly.

0.20

—10%

0.00 T T T T T T T T T
5 51 52 53 54 55 5 S5 58 5 60
Time (s)

Figure 16. Maximum errors between 50-second and 60-second for different error

tolerances with P=5

Table 8. Percentages of the elements with 2nd, 3rd, 4th, and 5th orders of

polynomial
Error Tolerance Order 2 Order 3 Order 4 Order 5
10% 83.26 11.78 3.21 1.75
5% 71.88 11.33 5.86 10.93
2% 62.01 12.58 5.01 20.40
1% 59.00 8.07 5.86 27.07

In the above discussion, the error distribution is evaluated every one second. To
make sure that the refinement has been done completely within the 60 seconds, 0.5
second and 0.2 second are used for the time interval. The computed drag and lift
coefficients are plotted in Figure 17. Except some time shift, the amplitudes and
averages of the drag and lift coefficients are very close. This means that results

provided above are reasonable.
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Figure 17. Drag and lift coefficients for different time interval of refinement:

(a) Drag coefficients; (b) List Coefficients

Effects of the Grid

It can be seen from Figures 13(b), 14(b), and 15(b) that the cases of P=3, P=3, and
P=3 or 4 or 5 have the highest accuracy of velocity for Grid-I, Grid-II, and Grid-III
respectively. Hence, the aerodynamic forces of these three cases, which are listed in
Table 9, are considered as the exact for each grid. For the Grid-I with P=3, the
number of equations of velocity and pressure are 10414 and 8118. They are 15994,
12948 and 33698, 29610 for Grid-Il and Grid-III with P=3 respectively. The
differences of the aerodynamic forces among the three grids are very minor while
the differences of the number of equations are very significant. Consequently, it is

unnecessary to use highly refined grid to evaluate the drag and lift forces.

Table 9. The exact aerodynamic forces for the three grids

Grid Average Cq Amplitude  Period (s) C« Amplitude Period (s) CL
Ca CL
I 1.422 0.216 2.352 1.402 4.723
II 1.428 0.223 2.320 1.414 4.646
III 1.444 0.226 2.309 1.439 4.620
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5.Conclusions

The p-version adaptive finite element method has been implemented into the
computational flow around a circular cylinder to compute aerodynamic forces. The
second through fifth orders of polynomials are considered for the velocity in the
adaptive method. One order less of polynomial is used for pressure. Velocity is
selected as the error estimator. A flow around a circular cylinder with Reynolds
number of 1000 was simulated using this technique. The effects of the highest
order of polynomials, error tolerance, and size of the element on the accuracy of the

drag and lift coefficients are surveyed using this flow simulation.

When the grid is coarse, the p-adaptive technique is very efficient. It can improve
accuracy significantly while the computed time does not increase much. For the
refined grid, the results of the present simulation show that the higher orders of
interpolation polynomials, P=4 and 5 for example, do not have much effect on the
accuracy of the velocity as well as the drag and lift coefficients. The error of the
velocity does not have much effect on the accuracy of the drag and lift force
coefficients. If the error estimation defined in this report is reasonable, the
aerodynamic force coefficients are insensitive to the accuracy of the velocity. The
accuracy of the results improves a lot when the prescribed error changes from 10%
to 5%. There is no much change when the error tolerance reduces from 5% to 2%
and then to 1% even though the percentage of the elements with Sth order
polynomial increases. The differences of the aerodynamic forces among the three
refined grids are very minor while the differences of the number of equations are

very significant.
The code will be applied to the practical aerospace problems, especially the

AFOSR/DEPSCoR funded work on fluid-structure interaction of aerospace

structures.
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Adaptive Navier-Stokes Flow Solver for Aerospace Structures

1. Introduction

|

i

The development of the advancing front mesh generation method is described in

| a series of papers by Peraire et al [1-4]. Important contributions to the development

} of the method have also been given by Lohner et al [5-7].'A1thbugh, two dimensional
mesh generation methods, similar in concept to the advémcing front method, have
been used since at least the early seventies, the generalizations which make the
advancing front method qualify as an automatic three dimensional mesh generation
method were not devised until the mid-eighties by the previously referenced works

by Peraire et al [3,4].

The characteristic feature of the advancing front method is that [7] elements and
nodes are created simultaneously, with all elements residing behind a front which
sweep's over the domain, starting from external as well as internal boundaries. The
front consists of those mesh line segments that separates the discretized and
undiscretized parts of the domain from each other. Hence, the initial front consists
of the mesh line segments that make up the boundary discretization. A line
segment is selected from the front and a new node is constructed so that a new
triangular element is formed. As this procedure is repeated, the front advances over
the domain and changes continuously in that old line segments are deleted and

new added as triangles are created. The mesh is complete when the front is empty.

2. Generation of Initial Mesh

2.1. Background Grid

The problem of generating a mesh over a two dimensional region of arbitrary
shape is considerably simplified if unstructured triangular meshes are employed.
For the method to be described here, this process is started by constructing by
hand a coarse background grid of 3-node triangular elements which completely
covers the solution domain of interest [2]. The background grid is used to provide a
piecewise linear spatial distribution for these parameters over the grid to be
generated. Thus, at each node on the background grid, the stretching: node spacing

8 , value of stretching parameter s and the direction of stretching o must be

31



Paer II: H-Adaptive Advancing Grid Generation Selvam and Qu

specified. During the generation process the local values of these quantities will be
obtained by linear interpolation, over the triangles of the background grid, between
the specified nodal values. If & is required to be uniform initially and no stretching
is to be specified, then the background grid need only consist of a single element

which covers the solution domain.

2.2. Generation of Boundary Nodes

Define the boundaries of the domain to be gridded. This is typically
accomplished by spines in 2-D and surface patches in 3-D. The boundary of the
solution domain is represented by the union of closed loops of curved segments and
boundary nodes are placed at the points of intersection 6f these segments. For
simply connected regions there is only one closed loop, whereas for multi-connected
regions there will be as many internal loops as the number of openings inside the
domain. The segments of exterior boundary are defined in an anti-clockwise
manner while the segments of the interior boundaries are specified in a clockwise
fashion. This means that, as the boundary curve is traversed, the region to be
triangulated always lies to the left. Before beginning the process of generating
triangles within the region of interest, the positioning of additional nodes on the
boundaries of the region has to be performed. Each boundary segment is
considered in turn and nodal points are generated on the boundary segments, with
the spacing of the points being determined by interpolated values of 6 , s and a
[2]. This yields the initial front.

2.3. Triangle Generation

At the start of the process the front consists of the sequence of straight line
segments which connect consecutive boundary nodes. During the generation
process, any straight line segment which is available to form an element side is
termed active, whereas any segment which is no longer active is removed from the
front. Thus, while the domain boundary will always remain the same, the
generation front will change continuously and has to be updated whenever a new
element is formed. The following steps are involved in the process of generation a

new triangle in the mesh.
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2.3.1 Prepare the creation the new element

2.3.1.1

2.3.1.2

2.3.1.3

Select the base edge on which the element is to be constructed. If large
variations in 8 are present in the background grid then it is advantageous
to look for the smallest active side, but if 8 is constant or varying slowly
the last active side in the front is used.

Determine the element size, i.e. the length of the two new edges of the so-
called ideal element. Suppose the chosen side joins nodes A and B.

Determine the local mesh parameters §,,, s,, and a,, at the mid-point of

AB by interpolating over the background grid.

— 65 'SMFG +8F 'SMGE +50 'SMEF

S (1)

SEFG
where S, ¢, Sycr» Suesr and Sgp; are the areas of the triangles MFG,MGE,
MEF and EFG and they are defined in Figure 1. Make a local rotation of

coordinates so that g,, lies along the x, axis and scale the x, coordinate by

a factor s,, .
Define the spatial neighborhood, i.e. the region close to the base edge where
the configuration of the front must be known to make the validation of the

new element possible.

Figure 1. Area distribution

2.3.2 Create the new element

2.3.2.1

Determine the position of the ideal node so that the resulting element is as

equilateral as possible while respecting the element size as defined by
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2.3.2.2

2.3.2.3

2324

background grid. In the new coordinate system, a triangle which is as

regular as possible will be generated. Determine 6, according to

0.554B S, <0.554B
5 =16, 0.55AB <35, <2AB 2)
24B 24B<4,

The inequalities used here are necessary to obtain ecometrical compatibility.
and to ensure that the elements with essive distoration are not generated.
Different inequalities can be devised out values shown have worked well in
practice. Note that not only the element size, but also the configuration of
the front is.considered when determining the position of the ideal node.
Also note that the configuration of the front might prevent creation of the
ideal node. If no node created go to 2.3.2.3.

Check the validity and the suitability of the ideal element. The validity
check consists in ensuring that none of the newly created edges intersects
with the front in the neighborhood. The suitability check consists in
ensuring that the node and the edges of the element are sufficient far from
nodes and edges in the front. If the ideal element satisfies the validity and
suitability requirements go to 2.3.3.

Check if any existing active node in the neighborhood can be used to form
the new element. A node should be positioned sufficiently close to the base
edge to be considered a candidate node. Usually, the candidate nodes are
defined as those lie within the circle with centre at C and radius rnAB.
(There is no unique choice for the value of » which should be adpoted, but
the value 2 has been used for the program.) These nodes are odered
according to their distance from C with the first node in the list being the
closest to C. The validity and the suitability of the elements formed with the
candidate nodes are checked in accordance with step 2.3.2.2. If several
elements pass both these checks, select the best element as determined by
the suitability check and then go to 2.3.3.

Create a set of try nodes on positions which are predetermined relative the
base edge. The validity and the suitability of the elements formed with the

try nodes are checked in accordance with step 2.3.2.2. If several elements
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pass both these checks, select the best element as determined by the
suitability check and then go to 2.3.3.

2.3.2.5 Check the validity and the suitability of the elements formed with the
existing nodes in the neighborhood as well as with the try nodes in step
2.3.2.4. The The validity and the suitability of the elements formed with the
try nodes nodes are checked in accordance with step 2.3.2.2. Among those
elements that pass the validity check, select the best element as

determined by the suitability check and then go to 2.3.3.

2.3.3 Update the front data
First, delete edges and nodes that no longer are members of the front. Second,
add a new node and new edges to the front data structures. The, if the front is not

empty go to 2.3.2.1 otherwise finish.

2.4 Implementations
2.4.1 Normalized Space

The construction of the ideal triangle is done in a transformed, so-called
normalized space as proposed by Peraire et al [2]. This is not absolutely necessary
but convenient in case of anisotropic mesh control, i.e. when the size of the triangle
should be different in mutually orthogonal directions. Anisotropic mesh control is
most easily specified by a node spacing 8 , a value of stretching parameter s and a
direction of stretching o . Note that we assume a to be a unit vector. The variation
over the domain of the mesh characteristics is given by a mesh size function, for
instance, a background mesh.

The first step of the coordinate transformation from model space to normalized
space is a translation of the origin of the model space coordinate system to the

midpoint of the base edge, x,,. In the second step, the coordinate system is rotated
so that the x, axis is aligned with the stretch direction o« . The third step is to scale
with 1/s along the o direction by which a normalized space with isotropic mesh

control is obtained. Hence, the ideal triangle is equilateral and the element size is &
in the normalized space. The coordinate transformation from model space to

normalized space is most easily expressed as
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/s 0 O}f cosf sind Of1 0 -x,,
N=SRT={ 0 1 0f-sind cosd 0|0 1 -x,, (3)
0 01 0 0 1j0 O 1

A

where the transformation matrix N is composed of the translation matrix T, the
rotation matrix R and the scaling matrix S. The mesh parameters s, 8 and a
defining the transformation are, for instance, evaluated at the midpoint of the base
edge. 0 is defined the angle from x, to %, and

Xp, =X
arc cos | 2241 (., — x5, 20)
AB ’ ’

8=
27 —arc cos (-%"—A—B)-C—A—‘l-j (xB’2 —Xp, 2 0)

(4)

Note that the transformation matrix defined by equation () assumes homogeneous

coordinates which iin this context simply means that a two dimensional point
X = [x1 xz]r is expressed as the triple x, = [xl X, I]T. Furthermore, note that the
row vectors of R rotate into the new coordinate axes. The inverse transformation

from the normalized space to model space is

1 0 x,,Jcosé —sind Os 0 0
M=T'R'S7'=|0 1 x,,|sind cosé 00 1 0 (5)
00 1] 0 0 10 0 1

2.4.2 Validity Check
Candidate nodes and triangles must satisfy certain so-called validity criteria to
be accepted as member in the mesh. The criterion whether to accept a candidate

node is that it should be positioned sufficiently far from existing nodes on the front.
Here sufficiently far is 0.676,, which is the element size. Hence, the node and
triangle validity criteria are as follows:

e A new node is valid and can be accepted as a member of the mesh if the

distance from it to the closest node is larger than 0.675,, .

e A triangle is vald and can be accepted as a member of the mesh if the two edges

do not intersect the advancing front.
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The node validity criterion is simply that a new candidate node should be at

least the distance 0.675,, away from existing nodes on the front. To check the

validity of a node is straightforward since it only consists of distance calculations.
For efficiency reasons square root evaluations should be avoided. Another
optimization is to check the distance in each coordinate direction separately in a
filtering step by which nodes out of bounds are quickly discarded. Note that the
neighborhood is large enough to contain all nodes of interest for the node validity
check.

The element validity criterion is what a new element is valid if it does not
intersect the front. To ensure the validity of an element is thus equivalent with to
check if any front edge intersects any of the edges of the candidate element. Here
we assume that the elements are straight sided triangles, and the validity check
then reduce to determine whether bounded line segment intersects. Even though
this is rather straightforward, the great number of intersections calculations that
needs to be done for the construction of a mesh motivates a carefully designed
algorithm. The core of the algorithm we propose is based on a line clipping
algorithm described by Blinn [3]. Before we proceed with description of the
algorithm for determining whether a front edge intersects a triangle in two

dimensional space, we introduce some useful notation. Each triangle edge, E,,

I=1,2,3 define a line that divides the Euclidian plane into two half spaces which we
call the positive half space, E,, and the negative half space, E, . The triangle is

oriented so that its interior is in E,,, and the normal vector , n, to E; is directed
towards the interior of the triangle. The implicit equation of the line E, is

bE =n"(x-x, ) (6)
where x; is a point on the line, x is an arbitray point, and bf’ is the so called

boundary coordinate of the point x with respect to the line E,. The following

relations holds for the boundary coordinates
>0 (xekE,)
b {=0 (xeE) (7)
<0 (x€E,)
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Note that bf" equals the perpendicular distance between the point x and the line

E, if n is a unit vector. Also note that we use the term line and edge to distinguish

between the unbounded and the bounded line, respectively.

A three layered filtering algorithm for checking whether a candidate triangle, ¢,
intersects a front edge, e, is defined as follows: '

1. Check if both endpoints of e are contained in the one and same negative half
space as defined by any of the triangle edges E,. If that is no interse;ction
between e and ¢, otherwise go to 2.

2. Check if one or both endpoints of e are in the interior of ¢. If that is the case,
there is an intersection between e and ¢, otherwise go to 3.

3. Check for intersection between e and E,, where I=1,2. If there is no
intersection, it can be finally concluded that e and ¢ does not intersect.

Step 1 is based on the observation that intersection can be ruled out if both
endpoints of the front edge are in the negative half-space of at least one of the
triangle edges. Note that the boundary coordinates for the front edge are saved as
they are calculated since they also are used in steps 2 and 3. Thus, the front edge
and the triangle do not intersect if the boundary coordinates for both endpoints of
the edge are contained in the triangle. A point is contained in the triangle if and
only if the point is in the positive half-space for each one of the triangle edges. This
corresponds to that all three boundary coordinates for a front edge (one for each E,)
are positive. Step 3 is reached only if the front edge intersects at least one of the
straight lines defined by the triangle edges E; (not necessarily within the
boundaries of the triangle edge). The check in step 3 is based on that there is an
intersection between a line segment in parametric form

x =X, +5(x, = x,) (8)
and a triangle edge E, if and only if the boundary coordinates bf;" and bfl' have

opposite signs, i.e. the points x, and x, are on different sides of the line E;. The

point of intersection between the line segment and the line is then obtained from

equation (6) and (7), viz.,
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E.
be'

ey E,
bxo' ‘bx.'

s (9)

An intersection s is calculated for each line E, for which the boundary coordinates

b% and bf" have opposite signs. What remains, is to determine whether any of the

Xo
intersections is within the boundaries of a triangle edge. This is accomplished by

associating the parameters #, and ¢ with the points x, and x,, respectively. The
parameters f, and # are initialized to zero and one, respectively. For each
intersection calculated from equation (9), the parameter whose associated boundary
coordinate is negative is updated, viz., -

t, = max(t,,s) (bf;" < O) (10)
f, =min(t,s) (b5 <0

If ¢, ever becomes greater than ¢, (¢, >1,) the line segment and the triangle does not
intersect. Consequently, the line segment crosses the triangle if /£, still less than ¢,

(¢, <t,) when e has been checked against all three E;. Finally, note that the second

and third step can be done simultaneously since the computations done in step two
also must be done in step three (check for boundary coordinate with opposite
signs). This is usually efficient since the inclusion of front nodes (step two) in a

triangle is not so common.

2.4.3 Suitability Criteria

The satisfaction of the validity criteria ensures the creation of a topologically
compatible mesh. However, the validity criterion does not ensure the creation of
well shaped elements. To avoid the construction of ill shaped elements, it is
necessary to control the distance between nodes and edges as the front advances
over the domain. Based on the considerations above we try to create well behaved
meshes without having to resort to global smoothing. To achieve this goal it is
necessary to control the distance between nodes and edges before accepting any
new node or edge. In fact, the suitability criteria are expressed as an angle criterion

which is as follows:
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e A new node is accepted as a member of the mesh if the smallest angle formed by

the node and any front edge is larger than >30°.

e A new edge is accepted as a member of the mesh if the smallest angle formed by

the edge and any front is >30°.

2.4.4 Control Line Discretization

Curve discretization is the least covered topic of mesh generation. Perhaps
because the subject is viewed as trivial. Although, curve discretization algorithms
have been proposed in References [3,6,9,10] and discussed by Frykestig in detail
[8]. o
2.4.4.1 Straight Linear Interpolation

Straight line interpolation is the simplest case for the discretization of boundary
lines. It is used for uniformed element size. The number of nodes or elements that
should be created on the line is usually specified in this case. The nodal locations
are determined through interpolation. Usually linear interpolation which results in
an equal subdivision of the line is used.

When the number of elements, N,, is defined, the element length is

=31 11
N (11)

4

where s, is the total length of the boundary line. If the length of elements, I',is

specified, the number of elements is

N, =|2L+05 (12)
“ |1

Int
Then equation (11) is used to calculate the actual element length. The locations of

node #; is

(13)

2.4.4.2 Arithmetic series expansion
The use of arithmetic [11] and geometric [10] series expansions is quite common

for line discretization. In these approaches, it is required to specify the element size
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at one or both endpoints of the line, and, possibly, the number of elements to be
created on the line. These methods are usually used in the case that the element
size changes slowly.

Consider a line with prescribed element lengths /| and /, at the two endpoints.
They can be obtained from the background definition. An arithmetic series line

discretization is defined as

L=l +d=IL+(-1)d (14)
N, * . * _

SL=ZI.-=N8(I‘2+12)=N"[21‘ +§Ne 1] (15
=1

where d is a constant for the line that determines the mesh grading. The number of

elements on the line is solved from equation (15) as

N, = [-25_+ 0.5} (16)
I +1, .
The lengths of the elements are then obtained as
=+ 2SN, (17)
N,-1\N,

We note that /,,, calculated from equation (17), is likely to differ from the specified
element size [, . The residual is r =1/, —1,,. It will satisfy I,, =/, by distributing r to

the interior elements, i.e.

1,:1,{1--—’,———7), 2<i<Ne-1 (18)
s, =l -1

2.4.4.3 Meshing size function approach
In this method, the spacing function 3(s) is defined over the line segment. It

defines the element size, or the distance between two neighboring nodes at the
point given by x(s) equivalently. Since &(s) can be thought on as having the unit
lenght/node , the reciprocal 1/6(s) can be interpreted as a node density. The number of

element which need to be created along the boundary line is calculated by direct
integration [3,9]
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A= f %ds (19)

Taking N, equal to the nearest integer to 4,. The nodal positions, s;, are calculated

from

i=Nep L g (20)
0 5(s)

Suppose the element sizes at both endpoints are 5, and 5, respectively. The
element size is then assumed to vary linearly between the two endpoints. The

spacing function 3 (s) is

5(s) = 5+5 5 | (21)
S

L
Substituting equation (21) into equations (19) and (20), one has
4=l & 22)
52 _51 51
5 =5, +_?‘1¢:(eun(a;/&')/m _1), i=12,,N, (23)
52 - 51
2.4.5 Locating Query Point M

In the h-version adaptive finite element method, the finite element gird is
generated adaptively according to the error in the computation. Usually, the
adaptive mesh is generated by considering the current computational gird as a
background gird [2]. Because the number of elements in the background mesh is
large, some consideration must be given to the search problem of finding the

element in the background mesh in which the query point M is located.

2.4.5.1 Searching Algorithms
Algorithm I

This algorithm requires, for each element e of the background grid, the
knowledge of the three surrounding elements which have sides in common with
element e. Given the coordinates of M and a starting element of the background
grid, the three area-coordinates of M are determined. If each area coordinate lies

between zero and one, then the element contains the point M . If not, the node for
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which the area coordinate is a minimum is found and this indicate the nest element

to be checked. As shown in Figure 2, if the area coordinates L, L, and L, of
element e are evaluated at M and L <L, <L,, the next element to be checked is

element ¢ . In this manner, the necessary of searching over all the elements in the

background grid is avoided.

Figure 2. Searching algorithm to locate point M on the background grid

Algorithm II

Another possibility is to store the nodes of the background mesh in an actree as
proposed by Lohner [5]. Every time the mesh size is queried at some point, the node
of the background mesh closest to the query point is found by searching the octree.
Once the closest point has been found, it is straightforward to find the element
containing the query point assuming that the adjacency relationships between
nodes and elements in the background mesh are available. The details of the octree

may be found in References 5,8.

2.4.5.2 Locating the Point M
Algorithm I - Peraire: [2]

If the three area-coordinates of M with respect to a triangle element in the
background grid lie between zero and one, the element contains the point. This

condition is equivalent to that the smallest area coordinate is non-negative. It can

be proven simply. Suppose coordinate L, is the smallest among the three
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coordinates. Because L, 20 and L+L;+L, =1, we have L;+L <1. With

considering L; > L, 20 and L, 2 L, 20, the conclusion may be obtained.

Algorithm II - Frykestig [8: 151-152]
Each triangle edge, E,;, I=1,2,3 define a line that divides the Euclidian plane into

two half spaces which we call the positive half space, E;, and the negative half
space, E, . The triangle is oriented so that its interior is in £, and the normal
vector, n, to E, is directed towards the interior of the triangle. The implicit equation
of the line E, is

bP = nT(x—in) (24)
where x, is a point on the line, x is an arbitrary point, and b is the so called

boundary coordinate of the point x with respect to the line E,. The following

relation holds for the boundary coordinates

>0 (xeE,)
bP{=0 (xeE) (25)

<0 (xe€E.)
Note that

bf" equals the perpendicular distance between the point x and the line

E, if n is a unit vector. Also note that we use the term line and edge to distinguish

between the unbounded and the bounded line, respectively.
For the line segment AB, one of its normal vectors n through the original may

be expressed as

n: (0,0) > (¥, =y X3 —%,) (26)
Therefore, equation (24) becomes
b, =(yA_yBXx—xE)+(xB_xAXy_yE) (27)

3. Adaptive Remeshing

The procedure outlined above enable an initial approximation to the steady state

solution to be obtained for a given problem. The solution quality can be improved by
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adaptively refining the mesh. This mesh adaptation is achieved by using the
computed solution to determine "optimum" nodal values for 8 , 5, and a@. The mesh -
is then regenerated with the initial computational mesh now acting as a

background grid.

4. Numerical Examples

Example |
As shown in Figure 3, the size of the rectangle ABCD is 1x2x1x2. Four
triangular elements are used for the background grid. At first, the ux}iformed grid

size is used. Therefore, the input data are given by

A D
4] >~ 3
~o /
~<_ F) e
\\\\ //
@ == @
PRl B
/// \\
///// @ N
sL-— N2
B C

Figure 3. Rectangle to be meshed

INODE | NISEG | NBACK | NPOIN

4 4 4 5

Coordinates of the boundary nodes:

X Y

N N O ©
=| O O =

Line segments defining the boundary:

1 2
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Definition of the grid size through background element:

X Y Size
1.5 0.5 0.1
2 0 0.1
2 1 0.1
0 1 0.1
0 0 0.1

Connectivity of the background grid:

1 2 3
1 3 4
1 4 S
1 5 2

Finally, the grid is shown in Figure 4. If we let the size at point 1 be 0.01. The

final gird is shown in Figure S.
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S0 SYAVAVAVAVAVAVAVAVAVAVAVAVAV b

S O VAVAVAVAVAVAVAVAVAVAVAVATAN RN
G s VAVAVAVAVAVAVAVAVAVAY, P
s O VVAvavavavavAvaAvavaY S
S0 AYAYAVAVAVAVAVAVAVAVAVAVY
RO VAVAVAVAVAVAVAVAVAVAVAVAVAVAS
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY
JAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAS
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AN
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S

V\/

Figure 4. Grid of the Rectangle with uniform size required
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Figure 5. Grid of the Rectangle with non-uniform size required

Example Il

.

As shown in Figure 6, the L-shaped domain is to be meshed. Four triangles are

used to define the background. Two cases are considered. For both cases, the

element sizes at nodes 1, 2, 3, and 4 are 10. The sizes at node 5 are 10 and 0.1

respectively. The input data can be given similarly. Finally, the grids are shown in

Figures 7 and 8.

4F _______ D
7
[ s
\ /
| \\ 7/
/
' N © Y
| N /
| N\ /
| N /
\ /
| AN /
F N
@ /5N
/ N
/ \
// \
\
/ @ \
/ N\
7 \
// >
1\ N
A

Figure 6. L-shaped domain
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Figure 7. Grid of the L-shaped domain with uniform size required
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Figure 8. Grid of the L-shaped domain with uniform size required

Example Il

Finally, a rectangle with one hole, as shown in Figure 9, is considered. The
boundary of the hole is approximated by 16 line segments. Two cases for the
background sizes are considered and listed in the following two tables. The finally

grids are shown in Figures 10 and 11.
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A
4

5
B

Figure 9. Rectangle with one hole

Definition of the grid size through background element (I):

X Y Size
1.5 0.5 0.01
2 0 0.1
2 1 0.1
0 1 0.1
0 0 0.1

Definition of the grid size through background element (II):

X Y Size
15 | 05 | 0002
7) ) 0.05
2 1 0.05
0 1 0.1
0 0 0.1

D
3

2
C

g et
4§'{}X¢pAuvAvAuvA AVAVA%Y% ﬁﬁé‘(
RS RIS
K R RIS RIS AR N>
KSR v
< PR AR RN
KK AP ORI E K
L ‘1P ARG RS {’
KKK R K
ooeduiiesiss L
M QAo S A
AV, KRR R oGS
R SRR
R IEIEE,
V\/ \/ N/

Figure 10. Grid for case 1 of the rectangle with hole
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Figure 11. Grid for case 2 of the rectangle with hole

Example IV

In this example, the adaptive remeshing scheme provided in Section 3 is
utilized. The initial grid is shown in Figure 12 which is uniform. After some time,
the grid is regenerated depending on the error at each element. During the
remeshing, the initial grid is looked as the background grid. The refined grid is
shown in Figure 13.

AYAYAYATA!

AYAYAVAYAYAY
AVAYAY

Figure 12. Initial Grid

Figure 13. Refined Grid

5. Conclusions

The details for the generation of two-dimensional advancing front grid was
provided. The schemes for the implementation of the generation were also

described. Two efficient searching algorithms for locating the query point have been
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presented. In the adaptive remeshing the current grid obtained from the advancing
front algorithm is usually looked as the background grid. Several examples were

provided to demonstrate the schemes in this report.
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CONCLUSIONS

In the first part P-adaptive FEM has been developed and applied for flow around
circular cylinder. The second through fifth orders of polynomials are considered for
the velocity in the adaptive method. One order less of polynomial is used for
pressure. Velocity is selected as the error estimator. A flow around a circular
cylinder with Reynolds number of 1000 was simulated using this technique. The
effects of the highest order of polynomials, error tolerance, and size of the element
on the accuracy of the drag and lift coefficients are surveyed using this flow

simulation.

When the grid is coarse, the p-adaptive technique is very efficient. It can improve
accuracy significantly while the computed time does not increase much. For the
refined grid, the results of the present simulation show that the higher orders of
interpolation polynomials, P=4 and 5 for example, do not have much effect on the
accuracy of the velocity as well as the drag and lift coefficients. The error of the
velocity does not have much effect on the accuracy of the drag and lift force
coefficients. If the error estimation defined in this report is reasonable, the
aerodynamic force coefficients are insensitive to the accuracy of the velocity. The
accuracy of the results improves a lot when the prescribed error changes from 10%
to 5%. There is no much change when the error tolerance reduces from 5% to 2%
and then to 1% even though the percentage of the elements with Sth order
polynomial increases. The differences of the aerodynamic forces among the three
refined grids are very minor while the differences of the number of equations are

very significant.

In the second part h-adaptive is investigated by first developing grid generation
program. The details for the generation of two-dimensional advancing front grid was
provided. The schemes for the implementation of the generation were also
described. Two efficient searching algorithms for locating the query point have been
presented. In the adaptive remeshing the current grid obtained from the advancing
front algorithm is usually looked as the background grid. Several examples were

provided to demonstrate the schemes in this report. Currently work is in progress
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to use the grid generator to solve the flow around circular cylinder and study the
issues in using h-adaptive comparing to p-adptive. Also work is under progress to

develop robust solvers. Some work is published in the following publication:

Selvam, R.P., Computational issues in solving the incompressible NS equations
(invited paper), Proceedings of the 2nd International Conference on Fluid Mechanics
& Fluid Power, P.C. Jain et. al. (Ed.), Ajay Printers & Publishers, IIT Roorkee, India,
Dec. 12-14, 2002 , Volume 1, pp. 1-6
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